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Abstract 

The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall 

objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and 

development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines 

probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to 

date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack 

thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describes current and planned research 

efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident 

scenarios. 
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1. Introduction  

The United States (U.S.) Department of Energy sponsors the Light Water Reactor Sustainability (LWRS) 

program, which has the overall objective of supporting the near-term and the extended operation of commercial 

nuclear power plants (NPPs). Life extension of existing NPPs is important because they are currently the largest 

source of carbon free electrical generation, and because the cost to build new NPPs is significantly higher. One key 

research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization 

(RISMC) pathway, which combines probabilistic risk simulation with thermohydraulic and reactor kinetic 

simulation codes (i.e., mechanistic multi-physics models) to define and manage safety margins for commercial NPPs 

[1] [2]. 

Broadly speaking, a “margin” is usually characterized either in deterministic or probabilistic terms. A 

deterministic margin is typically defined as the difference between capacity and load, or alternatively as the ratio of 

capacity to load. A probabilistic margin is usually defined as the probability that a load exceeds the capacity. The 

RISMC pathway uses the probabilistic margin characterization to quantify impacts to reliability and safety. 

Therefore, a probabilistic safety margin is a numerical value quantifying the probability that a safety metric (e.g., an 

important process variable such as clad temperature) will be exceeded under accident scenario conditions. This also 

means that instead of calculating risk as the frequency of an event (e.g., core damage), risk is conceptualized in 

terms of how close or not the NPP is to key safety related parameters or events, with the purpose of trying to 

understand how to better quantify and reduce uncertainty, and characterize the safety margin. 

The RISMC toolkit was developed at Idaho National Laboratory (INL) to perform these kinds of advanced safety 

analyses. As seen in figure 1, the toolkit uses the Multiphysics Object Oriented Simulation Environment (MOOSE) 

[3] as the underlying numerical solver framework, and consists of 1) the Reactor Excursion and Leak Analysis 

Program (RELAP)-7 code [4], which simulates the thermohydraulics of the plant, and 2) Reactor Analysis and 

Virtual Control Environment (RAVEN) [5]. RAVEN acts as a controller of the RELAP-7 simulation and generates 

multiple scenarios by stochastically changing the order and/or timing of events. Specifically, the risk simulation 

module includes as a “scenario generator” of normal and abnormal events that serve as inputs to the mechanistic 

codes, while the mechanistic codes input physical parameters (e.g., core temperature) to the risk simulation, thereby 

creating an advanced RISMC toolkit that NPP owners and operators can use to generate a more accurate 

representation of NPP safety margins, and their associated influences on operations and economics. 

 

 

Fig. 1. The approach used to support RISMC analysis. 
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1.1. Including human reliability analysis in RISMC 

In order to more completely model and calculate probabilities within the risk simulation, the RISMC toolkit 

needs to incorporate human reliability analysis (HRA) into the scenario generator, failure models, and operational 

rules. In terms of RAVEN’s control logic, the insertion point for HRA is through the control logic equations that are 

part of RAVEN’s overall plant equations (which also include mechanistic thermohydraulic equations). The control 

logic equations control parameters in RELAP-7 such as pump speeds and valve positions, which (along with the 

aforementioned thermohydraulic equations) affect thermohydraulic variables such as pressure, temperature, and 

flow rates, which subsequently feed back to the control parameters via monitored variables (e.g., average pressure, 

delta-t). 

In previous RISMC studies [6], human interactions were modeled in a simplified manner by using the 

Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method [7] contained in the Systems 

Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software was used. Moreover, while 

SPAR-H uses 8 performance shaping factors (PSFs) to adjust the nominal probability that an action will happen or 

not, thereby creating a Bernoulli distribution, only two of its 8 PSFs (e.g., complexity and stress/stressors) were used 

in the previous RISMC study. 

These simplifications aside, from a simulation point of view, the goal of [6] was not to determine if an action is 

performed but rather when such action is performed. Thus, probability distribution functions (PDFs) that define the 

probability that a human related action occurs as a function of time were created. As Table 1 shows, the standard 

lognormal parameters   and   were calculated from the 2 SPAR-H PSFs to create distributions representing the 

uncertainties related to when human related action is performed. 

Table 1. Correspondence table between complexity and stress/stressor level and time values. 

Complexity    (min)  Stress/stressors   (min) 

High 45  Extreme 30 

Moderate 15  High 15 

Nominal 5  Nominal 5 

 

From this transformation of SPAR-H PSFs to PDFs, very simple interactions between humans and the scenario 

evolution could be modeled in the RISMC toolkit, whereby the PDFs created defined when (not if) the human action 

was performed. However, given the simplified approach used, it also meant that the accident evolution and the 

human model were uncoupled, and the SPAR-H PSFs were assumed to be constant throughout the scenario. Errors 

of omission and commission were also not included. As such, the RISMC R&D efforts to date have not included 

robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human 

errors) can affect risk-margins and plant performance. This paper describes current and planned research efforts to 

enhance the human modeling components in order to increase the fidelity of simulated accident scenarios. 

2. Previous time-based HRA efforts 

One obvious way to enhance the research efforts undertaken thus far is to use time-based HRA models in the 

RISMC toolkit instead of SPAR-H. There are a number of time-based HRA methods and a few seminal HRA data 

collection efforts that could be used to provide modest improvements to the integration of human reliability into the 

RISMC approach. Generally speaking, time-based HRA models compute the human failure probability from the 

time available and the time needed to complete a task. The seminal examples of how timing is modeled include the 

classic HRA method, the Technique for Human Error Rate Prediction (THERP) [8], and the Human Cognitive 

Reliability (HCR) method [9]. In addition to HRA methods development, three different research activities collected 

time-based human reliability data: the Electric Power Research Institute (EPRI) Operator Reliability Experiments 

(ORE), the Risk Methods Integration and Evaluation Program (RMIEP) [10] [11], and the International HRA 

Empirical Study [12]. All of these sources provide timing data for NPP operators, with some focusing on high-level 
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tasks (e.g., isolating a ruptured steam generator, manually tripping the plant, etc.), and other looking at diagnosis 

activities during abnormal events. This timing data may provide useful, empirically based data for the RISMC 

toolkit. 

2.1. Timing in the Technique for Human Error Rate Prediction (THERP) 

In THERP, timing is used to predict the probability that an operator will successfully diagnose an abnormal event. 

The probability of success increases as time increases; immediately following the event, the probability of success is 

zero, but with infinite time available, the probability of successfully diagnosing the accident is one. Other factors 

(such as operator expertise) are not addressed in the model for the failure probability for diagnosis  [8]. 

Fig. 2 shows the failure probability, or time reliability curves for diagnosis as a function of time. The failure 

probability decreases as the time from the event increases. The failure timing model is based on the Nuclear 

Reliability Evaluation Program (NREP) procedures guide, [13]. Probability of failure to diagnose an abnormal event 

is assumed to be lognormal over time, generally decreasing as time from the event increases. For multiple abnormal 

events, a ten minute constant is added to the distribution for diagnosing the second event. Timing estimates are 

based entirely on expert consensus and are therefore “highly speculative,” with no data behind the model [14]. 

2.2. Human Cognitive Reliability 

The HCR method developed by EPRI improves on THERP’s treatment of timing in two significant ways. First, 

HCR includes timing considerations in multiple human failure events (not only diagnosis). Second, HCR is built on 

data from the ORE studies conducted in the 1980s, meaning that the time reliability curves employed in HCR are 

based on experimental data rather that expert judgment. As with THERP’s diagnosis failure probabilities, HCR 

estimates the probability of failure of different human interactions (HIs) using the time available and the time 

required. The method estimates the probability of non-response (i.e., the probability that an operator will not 

complete a specific HI) [15]. 

 

 

Fig. 2. THERP failure probability curves (Figure 12-4 in [8]). 
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The general approach calculates the time required for three phases of a HI: recognition of the problem, diagnosis 

of the problem, and recovery actions. For each phase, the analyst specifies the operator experience, stress, and 

quality of the human-machine interface. These three factors can increase or decrease the amount of time required for 

each phase of the HI. After calculating the time required to complete the HI’s three phases, the analyst refers to the 

appropriate HCR curve to estimate the probability of non-response [14]. 

2.3. Operator Reliability Experiment 

EPRI conducted the ORE in the 1980s to test and improve the HCR model. Data were collected at 8 plants. Four 

of the plants were boiling water reactors (BWRs) and four were pressurized water reactors (PWRs), with multiple 

crews observed at each plant. Fourteen unique PWR scenarios and 16 unique BWR scenarios were observed for the 

study, with some scenarios being repeated at multiple plants [12]. 

HCR defines three types of HIs: pre-initiating event HIs (Type A), initiating event-related HIs (Type B) and post-

initiating event HIs (Type C). Data collected in the study emphasizes Type C interactions, specifically post-

initiating, proceduralized HIs. Additionally, because Type C HIs are highly dependent on cues the plant provides 

(e.g., an alarm, a noticeable change in a plant parameter), and because success and failure are essentially defined by 

whether the operator correctly interprets and responds to that cue, a cue-response structure was defined to categorize 

operator responses to procedures into 5 different types. 

HIs are identified for each scenario, and individual crew response times are reported for each HI, along with 

scenario timelines for individual crews. The resulting aggregate data provides median response times for specific 

HIs. The expected standard deviation values for CP1-CP3 HI response times are also calculated. With this 

information, an analyst can develop a reasonable distribution for expected response times for other interactions 

without conducting extensive additional simulator studies. 

2.4. Risk Methods Integration and Evaluation Program 

For RMIEP, HRA researchers used the LaSalle NPP training simulator to collect time-based human reliability 

data related to diagnosis activities operators perform during accident scenarios. Nineteen crews from LaSalle 

participated. The objective of the effort was to collect data that would alleviate the heavy reliance on subjective 

expert judgment to inform the generation of time-reliability curves (i.e., curves showing the probability of non-

recovery as a function of time). 

The 8 different accident scenarios chosen for this study were based on prior studies that tentatively identified 

them as the dominant accident sequences for LaSalle, and as [13] states, “The recovery actions were identified and 

grouped based upon their operational similarities. Once these operational groups were formed, statistical tests were 

performed on the time data within each of the groups to determine whether the time data could be combined. If the 

statistical tests supported the operational group, then all data for actions within a group were combined and a 

function was fitted to the combined empirical data. Ten diagnosis time-reliability curves resulted which provide the 

PRA analyst with a data-based means of estimating the probability that the operators will fail to correctly diagnose 

the problem within a specified time.” (pg. 3). Overall, the RMIEP effort was one of just a few efforts with the goal 

of providing an empirical basis to help PRA estimate probabilities of success and failure for non-routine tasks, such 

as time-dependent diagnosis and misdiagnosis probabilities for accident sequences. 

2.5. International HRA Empirical Study 

The International HRA Empirical Study involved 14 crews. Each crew completed four scenarios: simple and 

complex versions of a steam generator tube rupture (SGTR) and a steam line break (SLB). Published reports include 

timing data for pre-defined human failure events (HFEs), and more detailed timing data are also available in the 

study data sets (see [16] and [17]). Although these data are limited to variations on two design-basis accidents, the 

relatively large number of crews in the study provides a distribution of timing data that could be used in the RISMC 
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toolkit. A related study featured similar data for loss of feedwater (LOFW) scenario variants [18]. Characteristic 

variations in timing that can be applied to other scenarios may be identifiable from these data. 

2.6. Next steps 

The RISMC toolkit has the opportunity to use the time-based HRA methods that have been developed and data 

that has been collected to better represent human actions in its risk simulations, thereby improving the overall risk 

models being used to inform margin and uncertainty quantification. Continued development of dynamic HRA 

specifically for RISMC applications also holds promise. Dynamic HRA methods are in many ways an extension of 

the early time-based methods, in that many still use the time needed versus time available logic [19] as a central 

component of their approach [20] [21]. The more recent dynamic HRA efforts are related to the Accident Dynamics 

Simulator-Information Decision and Action in Crew (ADS-IDAC) system [22], which ties together a cognitive 

model, a decision making engine, performance shaping factors, and a dynamic event simulator. ADS-IDAC was 

further extended to include a crew response model for emergency operations (i.e., a station blackout at a PWR) [23] 

and severe accidents in nuclear power plants [24]. Next steps include evaluating the feasibility of using ADS-IDAC 

in the RISMC toolkit for uncertainty quantification and safety margin characterization. 

3. Conclusion 

Nuclear power is an important component of the U.S. economy in that commercial NPPs provide reliable and 

cost-competitive base load electricity to homes and businesses. LWRS R&D activities are an important contribution 

to overall efforts to help maintain the current fleet of commercial NPPs. R&D under the RISMC pathway in 

particular is working to better define safety by changing the paradigm from calculating the frequency of failure to 

characterizing the safety margin. The R&D currently underway to include more robust models of human 

performance and error will help improve the accuracy of the probability calculations and quantification of 

uncertainties associated with characterizing safety margins. 
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